Helical magnetorotational instability in magnetized Taylor-Couette flow.
نویسندگان
چکیده
Hollerbach and Rüdiger have reported a new type of magnetorotational instability (MRI) in magnetized Taylor-Couette flow in the presence of combined axial and azimuthal magnetic fields. The salient advantage of this "helical" MRI (HMRI) is that marginal instability occurs at arbitrarily low magnetic Reynolds and Lundquist numbers, suggesting that HMRI might be easier to realize than standard MRI (axial field only), and that it might be relevant to cooler astrophysical disks, especially those around protostars, which may be quite resistive. We confirm previous results for marginal stability and calculate HMRI growth rates. We show that in the resistive limit, HMRI is a weakly destabilized inertial oscillation propagating in a unique direction along the axis. But we report other features of HMRI that make it less attractive for experiments and for resistive astrophysical disks. Large axial currents are required. More fundamentally, instability of highly resistive flow is peculiar to infinitely long or periodic cylinders: finite cylinders with insulating endcaps are shown to be stable in this limit, at least if viscosity is neglected. Also, Keplerian rotation profiles are stable in the resistive limit regardless of axial boundary conditions. Nevertheless, the addition of a toroidal field lowers thresholds for instability even in finite cylinders.
منابع مشابه
Comment on "Helical magnetorotational instability in magnetized Taylor-Couette flow".
Liu [Phys. Rev. E 74, 056302 (2006)] have presented a WKB analysis of the helical magnetorotational instability (HMRI), and claim that it does not exist for Keplerian rotation profiles. We show that, if radial boundary conditions are included, the HMRI can exist even for rotation profiles as flat as Keplerian, provided only that at least one of the boundaries is sufficiently conducting.
متن کاملExperimental evidence for magnetorotational instability in a Taylor-Couette flow under the influence of a helical magnetic field.
A recent Letter [R. Hollerbach and G. Rüdiger, Phys. Rev. Lett. 95, 124501 (2005)] has shown that the threshold for the onset of the magnetorotational instability in a Taylor-Couette flow is dramatically reduced if both axial and azimuthal magnetic fields are imposed. In agreement with this prediction, we present results of a Taylor-Couette experiment with the liquid metal alloy GaInSn, showing...
متن کاملHelical magnetorotational instability in a Taylor-Couette flow with strongly reduced Ekman pumping.
The magnetorotational instability (MRI) is thought to play a key role in the formation of stars and black holes by sustaining the turbulence in hydrodynamically stable Keplerian accretion disks. In previous experiments the MRI was observed in a liquid metal Taylor-Couette flow at moderate Reynolds numbers by applying a helical magnetic field. The observation of this helical MRI (HMRI) was inter...
متن کاملThe Weakly Nonlinear Magnetorotational Instability in a Global, Cylindrical Taylor-couette Flow
We conduct a global, weakly nonlinear analysis of the magnetorotational instability (MRI) in a Taylor-Couette flow. This is a multiscale perturbative treatment of the nonideal, axisymmetric MRI near threshold, subject to realistic radial boundary conditions and cylindrical geometry. We analyze both the standard MRI, initialized by a constant vertical background magnetic field, and the helical M...
متن کاملObservation of magnetocoriolis waves in a liquid metal Taylor-Couette experiment.
The first observation of fast and slow magnetocoriolis (MC) waves in a laboratory experiment is reported. Rotating nonaxisymmetric modes arising from a magnetized turbulent Taylor-Couette flow of liquid metal are identified as the fast and slow MC waves by the dependence of the rotation frequency on the applied field strength. The observed slow MC wave is damped but the observation provides a m...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Physical review. E, Statistical, nonlinear, and soft matter physics
دوره 74 5 Pt 2 شماره
صفحات -
تاریخ انتشار 2006